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Abstract
From our previous analytic solutions of the Ornstein–Zernike equation in the
mean-spherical approximation (Yasutomi M 2001 J. Phys.: Condens. Matter
13 L255), we obtain an analytic structure factor for one-component fluid with
a screened Coulomb plus power series interaction expressed as

c(r) = −φ(r)

kBT
=

L∑
τ=−1

K(τ)zτ+1rτ e−zr σ < r

where c(r) is the direct correlation function, φ(r) is the interaction potential,
kB is Boltzmann’s constant, T is a temperature, r is the interparticle separation,
K(τ) and z are constants, σ is the distance at contact of the particles, and L

is an arbitrary integer. The results provide a useful model basis for studying
a large variety of one-component fluids because almost all of the interaction
potentials between particles can be well approximated by the above closure.
As an example, we show a structure factor for a Lennard-Jones fluid.

In previous work (Yasutomi 2001), we have obtained an analytic solution of the Ornstein–
Zernike (OZ) equation for systems of hard spheres with a screened Coulomb plus power series
interaction expressed as

cij (r) = −φij (r)

kBT
=

∑
n=1

L∑
τ=−1

K
(n,τ)
ij zτ+1

n rτ e−znr σij = (σi + σj )/2 < r (1)

and

gij (r) ≡ hij (r) + 1 = 0 r < σij (2)

where L is an arbitrary integer, cij (r) and hij (r) are, respectively, the direct and the total
correlation functions for two spherical molecules of species i and j , r is the interparticle
separation, σi is the diameter of the spherical hard core of species i,K(n,τ)

ij and zn are constants
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to be adjusted on the basis of physical arguments, φij (r) is the pair-interaction potential in the
mean-spherical approximation (MSA), kB is Boltzmann’s constant, and T is a temperature.
We note here that the solutions for the Yukawa-type and Sogami–Ise-type closures (Sogami
and Ise 1984, Yasutomi and Ginoza 2000) for a multicomponent fluid are given when L = −1
and 0, respectively.

The physical properties of the system are obtained from the total correlation function
hij (r) or the distribution function gij (r). So far, these functions have been obtained for neutral
hard-sphere interaction (Henderson et al 1976, Waisman et al 1976, Thompson et al 1980,
Henderson et al 1980, Plischke and Henderson 1986), sticky hard-sphere interaction (Baxter
1968, Perram and Smith 1975, Barboy and Tenne 1979, Ginoza and Yasutomi 1996), a Yukawa
potential (Waisman 1973, Blum and Høye 1978, Blum 1980, Ginoza 1985, 1986), and a sticky
hard-sphere Yukawa interaction (Yasutomi and Ginoza 1996). However, these functions have
not yet been obtained for Sogami–Ise closure and the closure given by equation (1) for L � 1.
In the present letter, we apply the closures (1) and (2) to one-component fluid and obtain the
static structure factor. We have closely followed the exposition of our previous work, and the
interested reader is referred to it (Yasutomi 2001) for details.

In the present case, the closures are given by

c(r) = −φ(r)

kBT
= e−zr

L∑
τ=−1

K(τ)zτ+1rτ σ < r (3)

and

g(r) ≡ h(r) + 1 = 0 r < σ. (4)

The structure factor is expressed as

S(k) = 1 − 4πρ Re

[
g̃(1)(s)

s

]
s=ik

(5)

where k = (4πn/λ) sin(θ/2) (n is the refractive index of the medium, λ is the wavelength of
light, and θ is the scattering angle), ρ is the number density of the molecules, and

g̃(m)(s) ≡
∫ ∞

σ

dx e−sxxmg(x). (6)

The Fourier transform g̃(1)(s) is given by

2πg̃(1)(s) = Aχ(1)(σ, s) + Bχ(0)(σ, s)− ∑L+1
τ=0 z

τ+1C(τ)χ(τ)(σ, z + s)

[1 − ρQ̃(0)(is)]
. (7)

The coefficients and functions in the right-hand side of (7) are given in the appendix A.
The long-wavelength limit of S(k) is given by

S(0) = ρkBTKT =
(

2π

A

)2

(8)

where KT is the isothermal compressibility.
The radial distribution function is calculated from

g(r) = 1 +
1

2π2ρr

∫ ∞

0
dk [S(k)− 1]k sin kr. (9)

The contact value g(σ ) is given by

2πσg(σ) = Aσ + B − ze−zσ
L+1∑
k=0

(zσ )kC(k). (10)
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Figure 1. The LJ interaction potential (the circles) and its approximate potential (the solid curve)
given by equation (3).

The two sets of parameters D(m) and γ (n)(z) are obtained by solving the following two
sets of equations:

z1−mγ (m+1)(z) = ρÂmA + ρB̂mB +
L+1∑
µ=0

ρĈ(µ)
m C(µ) +

L∑
µ=−1

ρD̂(µ)
m D(µ) (11)

and

2πK(m−1) = zD(m−1)[1 − ρQ̃(0)(iz)] − z(m + 1)D(m)[1 + zρQ̃(1)(iz)− ρQ̃(0)(iz)]

+
L∑

τ=m+1

D(τ)zτ+1−mρ[(τ + 1)Cτ
τ−mQ̃

(τ−m)(iz)− Cτ+1
τ+1−mzQ̃

(τ+1−m)(iz)] (12)

where z2−mγ (m)(z) = 2πρg̃(m)(z), Cn
m = n!/m!(n − m)!, and the parameters Âm, B̂m, Ĉ(k)

m ,
and D̂(τ)

m are given in the appendix B. These can be solved by the Newton–Raphson iteration
technique. A physical branch of the solution has to be chosen from the manifold of solutions.

To solve (11) and (12) for the parameters D(m) and γ (n)(z) we first multiply K(τ) by a
factor f . We next change f from 0 to 1 in steps. When we can get solutions for f for a
certain step, we can use them as approximate solutions to the next step. Then we obtain exact
solutions by the Newton–Raphson method. In this way we can finally obtain exact solutions
for f = 1 after some steps. Thus, our problems are reduced to obtaining the solutions for
f = 0. In this case, from (11) and (A.3) we obtain

D(m−1) = C(m) = 0 (m = 0, 1, 2, . . . , L + 1). (13)

Substitutions of (13) into (A.1) and (A.2) lead to

A = π

'

(
2 +

πζ3

'

)
B = −ζ4

2

(
π

'

)2

. (14)

From (11) with (B.1) and (B.2) we get

zγ (1)(z) = ρ[Aχ(1)(σ, z) + Bχ(0)(σ, z)]

1 − ρ[(A/2))(2,0)(z, 0) + B)(1,0)(z, 0)]
(15)
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Figure 2. The structure factor S(kσ) for a LJ fluid. Figure 3. The distribution function g(r/σ ) for a LJ fluid.

and

z1−mγ (m+1) =
{

1 − ρ

[
A

2
)(2,0)(z, 0) + B)(1,0)(z, 0)

]}−1

×
{
ρ[Aχ(m+1)(σ, z) + Bχ(m)(σ, z)] +

m−1∑
ξ=0

Cm
ξ ρ

[
A

2
)(m−ξ+2,m−ξ)(z, 0)

+ B)(m−ξ+1,m−ξ)(z, 0)

]
z1−ξ γ (ξ+1)

}
(m � 1). (16)

We believe that the present results can be applied to almost all one-component fluids,
because the interaction potentials between particles can be well approximated by the present
closure. As a demonstration, we consider here a fluid of Lennard-Jones (LJ) particles at
temperature T = 100 K and packing fraction πρσ 3/6 = 0.3. The LJ potential between two
LJ particles is written as

φLJ (r) = 4ε

[(
σ0

r

)12

−
(
σ0

r

)6]
(17)

where the potential parameters σ0 = 0.3405 nm and ε/kB = 119.8 K are adopted. These are
the LJ parameters for argon.

As shown in figure 1, the LJ potential (the circles) is well approximated by equation (3) (the
solid line) with parameters σ = 0.961σ0, zσ = 13.7687, L = 20, andK(τ)/σ = −5.122 46×
1010, 1.301 37 × 1010, −7.872 17 × 108, −5.181 58 × 107, 6.575 96 × 105, −2.473 53 × 104,
−2.058 32×104, 1.243 63×103, −2.815 70×10, −1.952 11, 2.688 24×10−2, 9.040 13×10−3,
1.791 85 × 10−4, −1.512 96 × 10−5, −2.253 08 × 10−6, −3.624 83 × 10−8, 1.712 31 × 10−8,
−3.949 57×10−10, −3.329 26×10−11, 2.065×10−12, −4.389 95×10−14 and 3.388 66×10−16

for τ = −1, 0, 1, 2, 3, . . . , and 20, respectively. The structure factor S(kσ) and the distribution
function g(r/σ ) are shown in figures 2 and 3, respectively.

The present results would provide a useful model basis for studying a large variety of
one-component fluids.
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Appendix A

The coefficients and functions in (7) are

A = π

'

(
2 +

πζ3

'

)
+

2π

'

L∑
µ=−1

ρD(µ)

[
πζ2

'
H(µ,1) −

(
1 +

1

2

πζ3

'

)
H(µ,0)

]
(A.1)

B = −ζ4

2

(
π

'

)2

+
π

'

L∑
µ=−1

ρD(µ)

[(
2 − πζ3

'

)
H(µ,1) +

πζ4

2'
H(µ,0)

]
(A.2)

C(k) = −D(k−1) + (k + 1)D(k) +
(L+2)−k∑
τ=1

Cτ+k−1
τ−1 D(τ+k−2)γ (τ)(z) (A.3)

Q̃(m)(is) = 1

2
A)(m+2,m)(s, 0) + B)(m+1,m)(s, 0) +

L+1∑
k=0

C(k)k!
k∑

ξ=0

zk−ξ

(k − ξ)!
)(m+k−ξ,m)(s, z)

+
L∑

τ=−1

D(τ)zτ+1χ(m+τ+1)(0, z + s) (A.4)

χ(k)(b, a) = k!e−ab
k∑

ξ=0

bk−ξ

aξ+1(k − ξ)!
(b �= 0) (A.5)

χ(k)(0, x + iy) = k!

(x2 + y2)(k+1)/2

{
cos

[
(k + 1) tan−1 y

x

]
− i sin

[
(k + 1) tan−1 y

x

]}
(A.6)

)(n,m)(s, z) = χ(n)(0, z + s)− χ(n)(σ, z + s)− σn−me−zσ [χ(m)(0, s)− χ(m)(σ, s)] (A.7)

ζk = ρσ k ' = 1 − πζ3/6 (A.8)

and

H(µ,m) = zµ+1[χ(m+µ+1)(0, z)−)(m+µ+1,m)(0, z)]

+
µ+1∑
k=0

k!Cµ+1
µ+1−kγ

(µ+2−k)(z)
k∑

ξ=0

zk−ξ

(k − ξ)!
)(m+k−ξ,m)(0, z). (A.9)

Appendix B

The coefficients in (11) and (12) are

Âm = χ(m+1)(σ, z) + 1
2

m∑
ξ=0

z1−ξ γ (ξ+1)(z)Cm
ξ )

(m−ξ+2,m−ξ)(z, 0) (B.1)

B̂m = χ(m)(σ, z) +
m∑
ξ=0

z1−ξ γ (ξ+1)(z)Cm
ξ )

(m−ξ+1,m−ξ)(z, 0) (B.2)

Ĉ(k)
m =

m∑
ξ=0

z1−ξ γ (ξ+1)(z)Cm
ξ

k∑
τ=0

zk−τ k!

(k − τ)!
)(m−ξ+k−τ,m−ξ)(z, z)− zk+1χ(m+k)(σ, 2z) (B.3)

and

D̂(τ)
m = zτ+1

m∑
ξ=0

z1−ξ γ (ξ+1)(z)Cm
ξ χ

(m−ξ+τ+1)(0, 2z). (B.4)
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